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In this paper we investigate about the usage of spectral smoothed FIR filters for equalizing a car audio system. The target is also to build short filters that can be processed on DSP processors with
limited computing power. The inversion algorithm is based on the Nelson-Kirkeby method and on independent phase and magnitude smoothing, by means of a continuous phase method as
Panzer and Ferekidis showed. The filter is aimed to create a "target" frequency response, not necessarily flat, employing a little number of taps and maintaining good performances everywhere
inside the car's cockpit. As shown also by listening tests, smoothness and the choice of the right frequency response increase the performances of the car audio systems.

The usage of traditional inversion techniques gives FIR filters longer or equal than the measured impulse response. Because of the limited DSP computing power in automotive field, we aim to
reduce the filter length by spectral smoothing, as previously observed by [1]. Other advantages of this method are a remarkable enlargement of the sweet spot and the stability of the equalization

The smoothing algorithm is the same of [1]. It means that there is an
independent computing for magnitude and phase and this translates in

a non-linear complex averaging

800 Hz, 1/3 octave above).
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M: variable (magnitude or phase) to be smoothed
M’: smoothed variable
L: window length

a: half window length (L=2a+1)
W: window shape

Equation 1: magnitude/phase smoothing

We used some variable window lengths rules: Critical Bands (CB),
Equivalent Rectangular Bandwidths (ERB), Double Octave Fraction
(DOF) bands (1/24 octave below the car Schroeder frequency, =
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Figure 1: averaging window length vs frequency

The inversion technique is based on [3]. This
ensures a correct phase handling and

absence of strong peaks

in the filter

spectrum. The inverse filter S[k] can be
computed as follow:
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S[k]: Inverse filter
G[k]: smoothed and spectrally decimated version of the
system measured transfer function.
€: regularization parameter. has been taken (typically)
equal to 0.01

T[k] : target curve.

K Equation 2: Inverse filter synthesis /
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Other interesting results come from subjective parameters
relationships. We found 5 adjective well related to the global
filters liking (two are shown here, figure 10 and 11)
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Table 1: Student’s t test on “Liking”

parameter

This work was

supported by:

W W
L w & % v J
N .

Automotive Industries Group
/A Zendanr

= Telecommunication Systems

EEEEEEEEEEEEEEEE

\

Automotive Sound & Communication /




