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Preface
In putting together this course pack we decided not to simply include copies of the slides
for the course presentation, but to attempt to put together a small booklet of information
that could stand by itself. The course slides and other useful information, including a new
Java-based Kalman Filter Learning Tool are available at

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/

In addition, we maintain a popular web site dedicated to the Kalman filter. This site
contains links to related work, papers, books, and even some software.

http://www.cs.unc.edu/~welch/kalman/

We expect that you (the reader) have a basic mathematical background, sufficient to
understand explanations involving basic linear algebra, statistics, and random signals.
3



       
Course Syllabus

Time Speaker Topic Time

10:00 AM Bishop Welcome, Introduction, Intuition 0:30

10:30 AM Welch Concrete examples 0:30

11:00 AM Bishop Non-linear estimation 0:15

11:15 AM Welch System identification and multi-modal filters 0:30

11:45 AM Welch Conclusions (summary, resources, etc.) 0:15

12:00 PM

Total time 2:00
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1. Introduction
The Kalman filter is a mathematical power tool that is playing an increasingly important
role in computer graphics as we include sensing of the real world in our systems. The good
news is you don’t have to be a mathematical genius to understand and effectively use
Kalman filters. This tutorial is designed to provide developers of graphical systems with a
basic understanding of this important mathematical tool. 

1.1 Course Description

While the Kalman filter has been around for about 30 years, it (and related optimal
estimators) have recently started popping up in a wide variety of computer graphics
applications. These applications span from simulating musical instruments in VR, to head
tracking, to extracting lip motion from video sequences of speakers, to fitting spline
surfaces over collections of points. 

The Kalman filter is the best possible (optimal) estimator for a large class of problems and
a very effective and useful estimator for an even larger class. With a few conceptual tools,
the Kalman filter is actually very easy to use. We will present an intuitive approach to this
topic that will enable developers to approach the extensive literature with confidence.
5
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1.2 Speaker/Author Biographies

Greg Welch is a Research Assistant Professor in the Department of Computer Science at
the University of North Carolina at Chapel Hill. His research interests include hardware
and software for man-machine interaction, 3D interactive computer graphics, virtual
environments, tracking technologies, tele-immersion, and projector-based graphics. Welch
graduated with highest distinction from Purdue University with a degree in Electrical
Engineering Technology in 1986 and received a Ph.D. in computer science from UNC-
Chapel Hill in 1996. Before coming to UNC he worked at NASA's Jet Propulsion
Laboratory and Northrop-Grumman's Defense Systems Division. He is a member of the
IEEE Computer Society and the Association of Computing Machinery.

Gary Bishop is an Associate Professor in the Department of Computer Science at the
University of North Carolina at Chapel Hill. His research interests include hardware and
software for man-machine interaction, 3D interactive computer graphics, virtual
environments, tracking technologies, and image-based rendering. Bishop graduated with
highest honors from the Southern Technical Institute in Marietta, Georgia, with a degree in
Electrical Engineering Technology in 1976. He completed his Ph.D. in computer science
at UNC-Chapel Hill in 1984. Afterwards he worked for Bell Laboratories and Sun
Microsystems before returning to UNC in 1991.
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2. Probability and Random Variables
What follows is a very basic introduction to probability and random variables. For more
extensive coverage see for example (Maybeck 1979; Brown and Hwang 1996; Kailath,
Sayed et al. 2000).

2.1 Probability

Most of us have some notion of what is meant by a “random” occurrence, or the
probability that some event in a sample space will occur. Formally, the probability that the
outcome of a discrete event (e.g., a coin flip) will favor a particular event is defined as

.

The probability of an outcome favoring either  or  is given by

. (2.1)

If the probability of two outcomes is independent (one does not affect the other) then the
probability of both occurring is the product of their individual probabilities:

. (2.2)

For example, if the probability of seeing a “heads” on a coin flip is 1/2, then the
probability of seeing “heads” on both of two coins flipped at the same time is 1/4. (Clearly
the outcome of one coin flip does not affect the other.)

Finally, the probability of outcome  given an occurrence of outcome  is called the
conditional probability of  given , and is defined as

. (2.3)

2.2 Random Variables

As opposed to discrete events, in the case of tracking and motion capture, we are more
typically interested with the randomness associated with a continuous electrical voltage or
perhaps a user’s motion. In each case we can think of the item of interest as a continuous

p A( ) Possible outcomes favoring event A
Total number of possible outcomes
--------------------------------------------------------------------------------------=

A B

p A B∪( ) p A( ) p B( )+=

p A B∩( ) p A( ) p B( )=

A B
A B

p A B( ) p A B∩( )
p B( )

-----------------------=
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random variable. A random variable is essentially a function that maps all points in the
sample space to real numbers. For example, the continuous random variable  might
map time to position. At any point in time,  would tell us the expected position.

In the case of continuos random variables, the probability of any single discrete event  is
in fact 0. That is, . Instead we can only evaluate the probability of events within
some interval. A common function representing the probability of random variables is
defined as the cumulative distribution function:

. (2.4)

This function represents the cumulative probability of the continuous random variable 
for all (uncountable) events up to and including . Important properties of the cumulative
density function are

Even more commonly used than equation (2.4) is its derivative, known as the probability
density function:

. (2.5)

Following on the above given properties of the cumulative probability function, the
density function also has the following properties:

Finally note that the probability over any interval  is defined as

.

So rather than summing the probabilities of discrete events as in equation (2.1), for
continuous random variables one integrates the probability density function over the
interval of interest.

X t( )
X t( )

A
p A( ) 0=

FX x( ) p ∞– x ],(=

X
x

1. FX x( ) 0 as x ∞–→→

2. FX x( ) 1 as x +∞→→

3. FX x( ) is a non-decreasing function of x.

f X x( )
xd

d
FX x( )=

1. f X x( ) is a non-negative function

2. f X x( ) xd
∞–

∞
∫ 1.=

a b,[ ]

pX a b,[ ] f X x( ) xd
a
b

∫=
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2.3 Mean and Variance

Most of us are familiar with the notion of the average of a sequence of numbers. For some
 samples of a discrete random variable , the average or sample mean is given by

.

Because in tracking we are dealing with continuous signals (with an uncountable sample
space) it is useful to think in terms of an infinite number of trials, and correspondingly the
outcome we would expect to see if we sampled the random variable infinitely, each time
seeing one of  possible outcomes . In this case, the expected value of the discrete
random variable could be approximated by averaging probability-weighted events:

.

In effect, out of  trials, we would expect to see  occurrences of event , etc. This
notion of infinite trials (samples) leads to the conventional definition of expected value for
discrete random variables

(2.6)

for  possible outcomes  and corresponding probabilities . Similarly for
the continuous random variable the expected value is defined as

. (2.7)

Finally, we note that equation (2.6) and equation (2.7) can be applied to functions of the
random variable  as follows:

(2.8)

and

. (2.9)

N X

X
X1 X2 … XN+ + +

N
----------------------------------------------=

n x1…xn

X
p1N( )x1 p2N( )x2 … pnN( )xN+ + +

N
-------------------------------------------------------------------------------------------≈

N p1N( ) x1

Expected value of X E X( ) pixi
i 1=

n

∑= =

n x1…xn p1… pn

Expected value of X E X( ) x f X x( ) xd
∞–

∞
∫= =

X

E g X( )( ) pig xi( )
i 1=

n

∑=

E g X( )( ) g x( ) f X x( ) xd
∞–

∞
∫=
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The expected value of a random variable is also known as the first statistical moment. We
can apply the notion of equation (2.8) or (2.9), letting , to obtain the th

statistical moment. The th statistical moment of a continuous random variable  is given
by

. (2.10)

Of particular interest in general, and to us in particular, is the second moment of the
random variable. The second moment is given by

. (2.11)

When we let  and apply equation (2.11), we get the variance of the
signal about the mean. In other words,

Variance is a very useful statistical property for random signals, because if we knew the
variance of a signal that was otherwise supposed to be “constant” around some value—the
mean, the magnitude of the variance would give us a sense how much jitter or “noise” is in
the signal.

The square root of the variance, known as the standard deviation, is also a useful statistical
unit of measure because while being always positive, it has (as opposed to the variance)
the same units as the original signal. The standard deviation is given by

.

2.4 Normal or Gaussian Distribution

A special probability distribution known as the Normal or Gaussian distribution has
historically been popular in modeling random systems for a variety of reasons. As it turns
out, many random processes occurring in nature actually appear to be normally
distributed, or very close. In fact, under some moderate conditions, it can be proved that a
sum of random variables with any distribution tends toward a normal distribution. The
theorem that formally states this property is called the central limit theorem (Maybeck
1979; Brown and Hwang 1996). Finally, the normal distribution has some nice properties
that make it mathematically tractable and even attractive.

g X( ) Xk= k
k X

E Xk( ) xk f X x( ) xd
∞–

∞
∫=

E X2( ) x2 f X x( ) xd
∞–

∞
∫=

g X( ) X E X( )–=

Variance X E X E X( )–( )2[ ]=

E X2( ) E X( )2.–=

Standard deviation of X σX Variance of X= =
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Given a random process , i.e. a continuous random process  that is
normally distributed with mean  and variance  (standard deviation ), the probability
density function for  is given by

for . Any linear function of a normally distributed random process (variable) is
also a normally distributed random process. In particular if  and

, then

. (2.12)

The probability density function for  is then given by

. (2.13)

Finally, if  and  are independent (see Section 2.5 below), , and
, then

, (2.14)

and the density function becomes

. (2.15)

See (Kelly 1994) pp. 351-358 for further explanation and proofs of the above. Graphically,
the normal distribution is what is likely to be familiar as the “bell-shaped” curve shown
below in Figure 2.1.

2.5 Continuous Independence and Cond. Probability

Finally we note that as with the discrete case and equations (2.2) and (2.3), independence
and conditional probability are defined for continuous random variables. Two continuous
random variables  and  are said to be statistically independent if their joint probability

 is equal to the product of their individual probabilities. In other words, they are
considered independent if

.

X N µ σ2,( )∼ X
µ σ2 σ

X

f X x( )
1

2πσ2
-----------------e

1
2
--- x µ–( )2

σ2
-------------------–

=

∞– x ∞< <
X N µ σ2,( )∼

Y aX b+=

Y N aµ b+ a2σ2,( )∼

Y

f Y y( )
1

2πa2σ2
-----------------------e

1
2
--- y aµ b+( )–( )

a2σ2
----------------------------------

2
–

=

X1 X2 X1 N µ1 σ1
2,( )∼

X2 N µ2 σ2
2,( )∼

X1 X2+ N µ1 µ2+ σ1
2 σ2

2+,( )∼

f X x1 x2+( )
1

2π σ1
2 σ2

2+( )
-----------------------------------e

1
2
---

x µ1 µ2+( )–( )2

σ1
2 σ2

2+( )
--------------------------------------–

=

X Y
f XY x y,( )

f XY x y,( ) f X x( ) f Y y( )=
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Bayes’ Rule

In addition, Bayes’ rule follows from (2.3), offering a way to specify the probability
density of the random variable  given (in the presence of) random variable . Bayes’
rule is given as

.

Continuous-Discrete

Given a discrete process  and a continuous process , the discrete probability mass
function for  conditioned on  is given by

. (2.16)

Note that this formula provides a discrete probability based on the conditioning density,
without any integration. See (Kelly 1994) p. 546 for further explanation and proofs of the
above.

2.6 Spatial vs. Spectral Signal Characteristics

In the previous sections we looked only at the spatial characteristics of random signals. As
stated earlier, the magnitude of the variance of a signal can give us a sense of how much
jitter or “noise” is in the signal. However a signal’s variance says nothing about the

f X x( )

σ

x ∞→x ∞–→ mx0

Figure 2.1:  The Normal or Gaussian probability distribution function.

X Y

f X Y x( )
f Y X y( ) f X x( )

f Y y( )
-----------------------------------=

X Y
X Y y=

pX x | Y y=( )
f Y y | X x=( ) pX x( )

f Y y | X z=( ) pX z( )
z
∑
-------------------------------------------------------=
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spacing or the rate of the jitter over time. Here we briefly discuss the temporal and hence
spectral characteristics of a random signal. Such discussion can be focused in the time or
the frequency domain. We will look briefly at both.

A useful time-related characteristic of a random signal is its autocorrelation—its
correlation with itself over time. Formally the autocorrelation of a random signal  is
defined as

(2.17)

for sample times  and . If the process is stationary (the density is invariant with time)
then equation (2.17) depends only on the difference . In this common case the
autocorrelation can be re-written as

. (2.18)

Two hypothetical autocorrelation functions are shown below in Figure 2.1. Notice how
compared to random signal , random signal  is relatively short and wide. As 
increases (as you move away from  at the center of the curve) the autocorrelation
signal for  drops off relatively quickly. This indicates that  is less correlated with
itself than . 

Clearly the autocorrelation is a function of time, which means that it has a spectral
interpretation in the frequency domain also. Again for a stationary process, there is an
important temporal-spectral relationship known as the Wiener-Khinchine relation:

X t( )

RX t1 t2,( ) E X t1( )X t2( )[ ]=

t1 t2
τ t1 t2–=

RX τ( ) E X t( )X t τ+( )[ ]=

X2 X1 τ
τ 0=

X2 X2
X1

RX τ( )

0

Figure 2.2:  Two example (hypothetical) autocorrelation functions  and .X1 X2

ττ–

X1

X2

SX jω( ) ℑ RX τ( )[ ] RX τ( )e jωτ– τd
∞–

∞
∫= =
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where  indicates the Fourier transform, and  indicates the number of ( ) cycles
per second. The function  is called the power spectral density of the random
signal. As you can see, this important relationship ties together the time and frequency
spectrum representations of the same signal.

White Noise

An important case of a random signal is the case where the autocorrelation function is a
dirac delta function  which has zero value everywhere except when . In other
words, the case where

for some constant magnitude . In this special case where the autocorrelation is a “spike”
the Fourier transform results in a constant frequency spectrum. as shown in Figure 2.3.
This is in fact a description of white noise, which be thought of both as having power at all

frequencies in the spectrum, and being completely uncorrelated with itself at any time
except the present ( ). This latter interpretation is what leads white noise signals to
be called independent. Any sample of the signal at one time is completely independent
(uncorrelated) from a sample at any other time.

While impossible to achieve or see in practice (no system can exhibit infinite energy
throughout an infinite spectrum), white noise is an important building block for design and
analysis. Often random signals can be modeled as filtered or shaped white noise. Literally
this means that one could filter the output of a (hypothetical) white noise source to achieve
a non-white or colored noise source that is both band-limited in the frequency domain, and
more correlated in the time domain.

ℑ •[ ] ω 2π
SX jω( )

δ τ( ) τ 0=

RX τ( )
if τ 0=  then A

else 0



=

A

RX τ( )

0

Figure 2.3:  White noise shown in both the time (left) and frequency domain (right).

ττ– 0 ω

SX jω( )

τ 0=
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3. Stochastic Estimation
While there are many application-specific approaches to “computing” (estimating) an
unknown state from a set of process measurements, many of these methods do not
inherently take into consideration the typically noisy nature of the measurements. For
example, consider our work in tracking for interactive computer graphics. While the
requirements for the tracking information varies with application, the fundamental source
of information is the same: pose estimates are derived from noisy electrical measurements
of mechanical, inertial, optical, acoustic, or magnetic sensors. This noise is typically
statistical in nature (or can be effectively modeled as such), which leads us to stochastic
methods for addressing the problems. Here we provide a very basic introduction to the
subject, primarily aimed at preparing the reader for Chapter 4. For a more extensive
discussion of stochastic estimation see for example (Lewis 1986; Kailath, Sayed et al.
2000).

3.1 State-Space Models

State-space models are essentially a notational convenience for estimation and control
problems, developed to make tractable what would otherwise be a notationally-intractable
analysis. Consider a dynamic process described by an n-th order difference equation
(similarly a differential equation) of the form

, ,

where  is a zero-mean (statistically) white (spectrally) random “noise” process with
autocorrelation

,

and initial values  are zero-mean random variables with a known
 covariance matrix

, .

Also assume that

 for  and ,

which ensures (Kailath, Sayed et al. 2000) that

yi 1+ a0 i, yi … an 1– i, yi n– 1+ ui+ + += i 0≥

ui{ }

E ui u j,( ) Ru Qiδij= =

y0 y 1– … y n– 1+, , ,{ }
n n×

P0 E y j– y k–,( )= j k, 0 n 1–,{ }∈

E ui yi,( ) 0= n– 1 j 0≤ ≤+ i 0≥
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, .

In other words, that the noise is statistically independent from the process to be estimated.
Under some other basic conditions (Kailath, Sayed et al. 2000) this difference equation
can be re-written as

which leads to the state-space model

or the more general form

(3.1)

. (3.2)

Equation (3.1) represents the way a new state  is modeled as a linear combination of
both the previous state  and some process noise . Equation (3.2) describes the way the
process measurements or observations  are derived from the internal state . These two
equations are often referred to respectively as the process model and the measurement
model, and they serve as the basis for virtually all linear estimation methods, such as the
Kalman filter described below.

3.2 The Observer Design Problem

There is a related general problem in the area of linear systems theory generally called the
observer design problem. The basic problem is to determine (estimate) the internal states
of a linear system, given access only to the system’s outputs. (Access to the system’s
control inputs is also presumed, but we omit that aspect here. See for example (Kailath,
Sayed et al. 2000) for more information.) This is akin to what people often think of as the
“black box” problem where you have access to some signals coming from the box (the
outputs) but you cannot directly observe what’s inside.

E ui yi,( ) 0= i j 0≥ ≥

xi 1+

yi 1+

yi

yi 1–

 

yi n– 2+

≡

a0 a1 … an 2– an 1–

1 0 … 0 0

0 1 … 0 0

  …   

0 0 … 1 0

yi

yi 1–

yi 2–

 

yi n– 1+

1

0

0

 

1

ui+=

… … ……… …

…{ { {

A xi G

xi 1+ Axi Gui+=

yi 1 0 … 0 xi=

xi 1+ Axi Gui+=

yi Hixi=

xi 1+
xi ui

yi xi
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The many approaches to this basic problem are typically based on the state-space model
presented in the previous section. There is typically a process model that models the
transformation of the process state. This can usually be represented as a linear stochastic
difference equation similar to equation (3.1):

. (3.3)

In addition there is some form of measurement model that describes the relationship
between the process state and the measurements. This can usually be represented with a
linear expression similar to equation (3.2):

. (3.4)

The terms  and  are random variables representing the process and measurement
noise respectively. Note that in equation (3.4) we changed the dependent variable to 
instead of  as in equation (3.2). The rationale is to reinforce the notion that the
measurements to not have to be of elements of the state specifically, but can be any linear
combination of the state elements.

Measurement and Process Noise

We consider here the common case of noisy sensor measurements. There are many
sources of noise in such measurements. For example, each type of sensor has fundamental
limitations related to the associated physical medium, and when pushing the envelope of
these limitations the signals are typically degraded. In addition, some amount of random
electrical noise is added to the signal via the sensor and the electrical circuits. The time-
varying ratio of “pure” signal to the electrical noise continuously affects the quantity and
quality of the information. The result is that information obtained from any one sensor
must be qualified as it is interpreted as part of an overall sequence of estimates, and
analytical measurement models typically incorporate some notion of random
measurement noise or uncertainty as shown above.

There is the additional problem that the actual state transform model is completely
unknown. While we can make predictions over relatively short intervals using models
based on recent state transforms, such predictions assume that the transforms are
predictable, which is not always the case. The result is that like sensor information,
ongoing estimates of the state must be qualified as they are combined with measurements
in an overall sequence of estimates. In addition, process models typically incorporate
some notion of random motion or uncertainty as shown above.

xk Axk 1– Buk wk 1–+ +=

zk H xk vk+=

wk vk
zk

yk
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4. The Kalman Filter
Within the significant toolbox of mathematical tools that can be used for stochastic
estimation from noisy sensor measurements, one of the most well-known and often-used
tools is what is known as the Kalman filter. The Kalman filter is named after Rudolph E.
Kalman, who in 1960 published his famous paper describing a recursive solution to the
discrete-data linear filtering problem (Kalman 1960). A very “friendly” introduction to the
general idea of the Kalman filter is offered in Chapter 1 of (Maybeck 1979)—which is
available from the above Kalman filter web site, and we have included it (with permission)
in this course pack. A more complete introductory discussion can be found in (Sorenson
1970), which also contains some interesting historical narrative. More extensive
references include (Gelb 1974; Maybeck 1979; Lewis 1986; Jacobs 1993; Brown and
Hwang 1996; Grewal and Andrews 2001). In addition, for many years we have maintained
a web site dedicated to the Kalman filter. This site contains links to related work, papers,
books, and even some software including a new Java-based Kalman Filter Learning Tool.

http://www.cs.unc.edu/~welch/kalman/

The Kalman filter is essentially a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in the sense that it minimizes the
estimated error covariance—when some presumed conditions are met. Since the time of
its introduction, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation. This is likely
due in large part to advances in digital computing that made the use of the filter practical,
but also to the relative simplicity and robust nature of the filter itself. Rarely do the
conditions necessary for optimality actually exist, and yet the filter apparently works well
for many applications in spite of this situation.

Of particular note here, the Kalman filter has been used extensively for tracking in
interactive computer graphics. We use a single-constraint-at-a-time Kalman filter (see
Section 5.4 on page 41) in our HiBall Tracking System (Welch, Bishop et al. 1999; Welch,
Bishop et al. 2001) which is commercially available from 3rdTech (3rdTech 2000). It has
also been used for motion prediction (Azuma and Bishop 1994; Azuma 1995), and it is
used for multi-sensor (inertial-acoustic) fusion in the commercial Constellation™ wide-
area tracking system by Intersense (Foxlin, Harrington et al. 1998; Intersense 2000). See
also (Fuchs (Foxlin) 1993; Van Pabst and Krekel 1993; Azarbayejani and Pentland 1994;
Emura and Tachi 1994; Emura and Tachi 1994; Mazuryk and Gervautz 1995). 
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4.1 The Discrete Kalman Filter

This section describes the filter in its original formulation (Kalman 1960) where the
measurements occur and the state is estimated at discrete points in time.

4.1.1 The Process to be Estimated

The Kalman filter addresses the general problem of trying to estimate the state  of
a discrete-time controlled process that is governed by the linear stochastic difference
equation

, (4.1)

with a measurement  that is

. (4.2)

The random variables  and  represent the process and measurement noise
(respectively). They are assumed to be independent (of each other), white, and with
normal probability distributions

, (4.3)

. (4.4)

In practice, the process noise covariance  and measurement noise covariance 
matrices might change with each time step or measurement, however here we assume they
are constant.

The  matrix  in the difference equation equation (4.1) relates the state at the
previous time step  to the state at the current step , in the absence of either a driving
function or process noise. Note that in practice  might change with each time step, but
here we assume it is constant. The  matrix B relates the optional control input 
to the state x. The  matrix  in the measurement equation equation (4.2) relates the
state to the measurement zk. In practice  might change with each time step or
measurement, but here we assume it is constant.

4.1.2 The Computational Origins of the Filter

We define  (note the “super minus”) to be our a priori state estimate at step k
given knowledge of the process prior to step k, and  to be our a posteriori state
estimate at step k given measurement . We can then define a priori and a posteriori
estimate errors as

x ℜ
n

∈

xk Axk 1– Buk wk 1–+ +=

z ℜ
m

∈

zk H xk vk+=

wk vk

p w( ) N 0 Q,( )∼

p v( ) N 0 R,( )∼

Q R

n n× A
k 1– k

A
n l× u ℜ

l
∈

m n× H
H

x̂k
-

ℜ
n

∈
x̂k ℜ

n
∈

zk

ek
-

xk x̂k
-
, and–≡

ek xk x̂k.–≡
20



Course 8—An Introduction to the Kalman Filter
The a priori estimate error covariance is then

, (4.5)

and the a posteriori estimate error covariance is

. (4.6)

In deriving the equations for the Kalman filter, we begin with the goal of finding an
equation that computes an a posteriori state estimate  as a linear combination of an a
priori estimate  and a weighted difference between an actual measurement  and a
measurement prediction  as shown below in equation (4.7). Some justification for
equation (4.7) is given in “The Probabilistic Origins of the Filter” found below.

(4.7)

The difference  in equation (4.7) is called the measurement innovation, or the
residual. The residual reflects the discrepancy between the predicted measurement 
and the actual measurement . A residual of zero means that the two are in complete
agreement. 

The  matrix K in equation (4.7) is chosen to be the gain or blending factor that
minimizes the a posteriori error covariance equation (4.6). This minimization can be
accomplished by first substituting equation (4.7) into the above definition for ,
substituting that into equation (4.6), performing the indicated expectations, taking the
derivative of the trace of the result with respect to K, setting that result equal to zero, and
then solving for K. For more details see (Maybeck 1979; Jacobs 1993; Brown and Hwang
1996). One form of the resulting K that minimizes equation (4.6) is given by1

. (4.8)

Looking at equation (4.8) we see that as the measurement error covariance  approaches
zero, the gain K weights the residual more heavily. Specifically,

.

1. All of the Kalman filter equations can be algebraically manipulated into to several forms. 
Equation equation (4.8) represents the Kalman gain in one popular form.
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On the other hand, as the a priori estimate error covariance  approaches zero, the gain
K weights the residual less heavily. Specifically,

.

Another way of thinking about the weighting by K is that as the measurement error
covariance  approaches zero, the actual measurement  is “trusted” more and more,
while the predicted measurement  is trusted less and less. On the other hand, as the a
priori estimate error covariance  approaches zero the actual measurement  is trusted
less and less, while the predicted measurement  is trusted more and more.

4.1.3 The Probabilistic Origins of the Filter

The justification for equation (4.7) is rooted in the probability of the a priori estimate 
conditioned on all prior measurements  (Bayes’ rule). For now let it suffice to point out
that the Kalman filter maintains the first two moments of the state distribution,

The a posteriori state estimate equation (4.7) reflects the mean (the first moment) of the
state distribution— it is normally distributed if the conditions of equation (4.3) and
equation (4.4) are met. The a posteriori estimate error covariance equation (4.6) reflects
the variance of the state distribution (the second non-central moment). In other words,

.

For more details on the probabilistic origins of the Kalman filter, see (Brown and Hwang
1996).

4.1.4 The Discrete Kalman Filter Algorithm

We will begin this section with a broad overview, covering the “high-level” operation of
one form of the discrete Kalman filter (see the previous footnote). After presenting this
high-level view, we will narrow the focus to the specific equations and their use in this
version of the filter.

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward (in time) the current state and error covariance
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estimates to obtain the a priori estimates for the next time step. The measurement update
equations are responsible for the feedback—i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown below in Figure 4.1.

The specific equations for the time and measurement updates are presented below in
table 4.1 and table 4.2.

Again notice how the time update equations in table 4.1 project the state and covariance
estimates forward from time step  to step .  and B are from equation (4.1), while

 is from equation (4.3). Initial conditions for the filter are discussed in the earlier
references.

Table 4.1: Discrete Kalman filter time update equations. 

(4.9)

(4.10)

Table 4.2: Discrete Kalman filter measurement update equations. 

(4.11)

(4.12)

(4.13)

Time Update
(“Predict”)

Measurement Update
(“Correct”)

Figure 4.1: The ongoing discrete Kalman filter cycle. The
time update projects the current state estimate ahead in
time. The measurement update adjusts the projected
estimate by an actual measurement at that time. 

x̂k
-

Ax̂k 1– Buk+=

Pk
-

APk 1– AT Q+=

k 1– k A
Q

Kk Pk
-
HT HPk

-
HT R+( )

1–
=

x̂k x̂k
-

Kk zk H x̂k
-

–( )+=

Pk I KkH–( )Pk
-

=

23



SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
The first task during the measurement update is to compute the Kalman gain, . Notice
that the equation given here as equation (4.11) is the same as equation (4.8). The next step
is to actually measure the process to obtain , and then to generate an a posteriori state
estimate by incorporating the measurement as in equation (4.12). Again equation (4.12) is
simply equation (4.7) repeated here for completeness. The final step is to obtain an a
posteriori error covariance estimate via equation (4.13).

After each time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates. This recursive
nature is one of the very appealing features of the Kalman filter—it makes practical
implementations much more feasible than (for example) an implementation of a Wiener
filter (Brown and Hwang 1996) which is designed to operate on all of the data directly for
each estimate. The Kalman filter instead recursively conditions the current estimate on all
of the past measurements. Figure 4.2 below offers a complete picture of the operation of
the filter, combining the high-level diagram of Figure 4.1 with the equations from table 4.1
and table 4.2.

4.2 The Extended Kalman Filter (EKF)

4.2.1 The Process to be Estimated

As described above in Section 4.1.1, the Kalman filter addresses the general problem of
trying to estimate the state  of a discrete-time controlled process that is governed
by a linear stochastic difference equation. But what happens if the process to be estimated
and (or) the measurement relationship to the process is non-linear? Some of the most

Kk

zk

Kk Pk
-
HT HPk

-
HT R+( )

1–
=

(1) Compute the Kalman gain

x̂k 1–Initial estimates for and Pk 1–

x̂k x̂k
-

Kk zk H x̂k
-

–( )+=

(2) Update estimate with measurement zk

(3) Update the error covariance

Pk I KkH–( )Pk
-

=

Measurement Update (“Correct”)

(1) Project the state ahead

(2) Project the error covariance ahead
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Figure 4.2: A complete picture of the operation of the Kalman filter, combining the
high-level diagram of Figure 4.1 with the equations from table 4.1 and table 4.2. 
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interesting and successful applications of Kalman filtering have been such situations. A
Kalman filter that linearizes about the current mean and covariance is referred to as an
extended Kalman filter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current
estimate using the partial derivatives of the process and measurement functions to
compute estimates even in the face of non-linear relationships. To do so, we must begin by
modifying some of the material presented in Section 4.1. Let us assume that our process
again has a state vector , but that the process is now governed by the non-linear
stochastic difference equation

, (4.14)

with a measurement  that is

, (4.15)

where the random variables  and  again represent the process and measurement
noise as in equation (4.3) and equation (4.4). In this case the non-linear function  in the
difference equation equation (4.14) relates the state at the previous time step  to the
state at the current time step . It includes as parameters any driving function uk and the
zero-mean process noise wk. The non-linear function  in the measurement equation
equation (4.15) relates the state  to the measurement .

In practice of course one does not know the individual values of the noise  and  at
each time step. However, one can approximate the state and measurement vector without
them as

(4.16)

and

, (4.17)

where  is some a posteriori estimate of the state (from a previous time step k).

It is important to note that a fundamental flaw of the EKF is that the distributions (or
densities in the continuous case) of the various random variables are no longer normal
after undergoing their respective nonlinear transformations. The EKF is simply an ad hoc
state estimator that only approximates the optimality of Bayes’ rule by linearization. Some
interesting work has been done by Julier et al. in developing a variation to the EKF, using
methods that preserve the normal distributions throughout the non-linear transformations
(Julier and Uhlmann 1996).
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4.2.2 The Computational Origins of the Filter

To estimate a process with non-linear difference and measurement relationships, we begin
by writing new governing equations that linearize an estimate about equation (4.16) and
equation (4.17),

, (4.18)

. (4.19)

where

•  and  are the actual state and measurement vectors,

•  and  are the approximate state and measurement vectors from 

equation (4.16) and equation (4.17),

•  is an a posteriori estimate of the state at step k,

• the random variables  and  represent the process and measurement noise 

as in equation (4.3) and equation (4.4). 

• A is the Jacobian matrix of partial derivatives of  with respect to x, that is

,

• W is the Jacobian matrix of partial derivatives of  with respect to w,

,

• H is the Jacobian matrix of partial derivatives of  with respect to x,

,

• V is the Jacobian matrix of partial derivatives of  with respect to v,

.

Note that for simplicity in the notation we do not use the time step subscript  with the
Jacobians , , , and , even though they are in fact different at each time step.
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Now we define a new notation for the prediction error,

, (4.20)

and the measurement residual,

. (4.21)

Remember that in practice one does not have access to  in equation (4.20), it is the
actual state vector, i.e. the quantity one is trying to estimate. On the other hand, one does
have access to  in equation (4.21), it is the actual measurement that one is using to
estimate . Using equation (4.20) and equation (4.21) we can write governing equations
for an error process as

, (4.22)

, (4.23)

where  and  represent new independent random variables having zero mean and
covariance matrices  and , with  and  as in (4.3) and (4.4) respectively.

Notice that the equations equation (4.22) and equation (4.23) are linear, and that they
closely resemble the difference and measurement equations equation (4.1) and
equation (4.2) from the discrete Kalman filter. This motivates us to use the actual
measurement residual  in equation (4.21) and a second (hypothetical) Kalman filter to
estimate the prediction error  given by equation (4.22). This estimate, call it , could
then be used along with equation (4.20) to obtain the a posteriori state estimates for the
original non-linear process as

. (4.24)

The random variables of equation (4.22) and equation (4.23) have approximately the
following probability distributions (see the previous footnote):

Given these approximations and letting the predicted value of  be zero, the Kalman
filter equation used to estimate  is

. (4.25)
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By substituting equation (4.25) back into equation (4.24) and making use of
equation (4.21) we see that we do not actually need the second (hypothetical) Kalman
filter:

(4.26)

Equation equation (4.26) can now be used for the measurement update in the extended
Kalman filter, with  and  coming from equation (4.16) and equation (4.17), and the
Kalman gain  coming from equation (4.11) with the appropriate substitution for the
measurement error covariance.

The complete set of EKF equations is shown below in table 4.3 and table 4.4. Note that we
have substituted  for  to remain consistent with the earlier “super minus” a priori
notation, and that we now attach the subscript  to the Jacobians , , , and , to
reinforce the notion that they are different at (and therefore must be recomputed at) each
time step. 

As with the basic discrete Kalman filter, the time update equations in table 4.3 project the
state and covariance estimates from the previous time step  to the current time step

. Again  in equation (4.27) comes from equation (4.16),  and  are the process
Jacobians at step k, and  is the process noise covariance equation (4.3) at step k.

As with the basic discrete Kalman filter, the measurement update equations in table 4.4
correct the state and covariance estimates with the measurement . Again  in
equation (4.30) comes from equation (4.17),  and V are the measurement Jacobians at
step k, and  is the measurement noise covariance equation (4.4) at step k. (Note we now
subscript  allowing it to change with each measurement.)

Table 4.3: EKF time update equations. 

(4.27)

(4.28)

Table 4.4: EKF measurement update equations. 
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The basic operation of the EKF is the same as the linear discrete Kalman filter as shown in
Figure 4.1. Figure 4.3 below offers a complete picture of the operation of the EKF,
combining the high-level diagram of Figure 4.1 with the equations from table 4.3 and
table 4.4.

Figure 4.3: A complete picture of the operation of the extended Kal-
man filter, combining the high-level diagram of Figure 4.1 with the 
equations from table 4.3 and table 4.4.

An important feature of the EKF is that the Jacobian  in the equation for the Kalman
gain  serves to correctly propagate or “magnify” only the relevant component of the
measurement information. For example, if there is not a one-to-one mapping between the
measurement  and the state via , the Jacobian  affects the Kalman gain so that it
only magnifies the portion of the residual  that does affect the state. Of
course if over all measurements there is not a one-to-one mapping between the
measurement  and the state via , then as you might expect the filter will quickly
diverge. In this case the process is unobservable.

4.3 An Example: Estimating a Random Constant

In the previous two sections we presented the basic form for the discrete Kalman filter, and
the extended Kalman filter. To help in developing a better feel for the operation and
capability of the filter, we present a very simple example here.
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4.3.1 The Process Model

In this simple example let us attempt to estimate a scalar random constant, a voltage for
example. Let’s assume that we have the ability to take measurements of the constant, but
that the measurements are corrupted by a 0.1 volt RMS white measurement noise (e.g. our
analog to digital converter is not very accurate). In this example, our process is governed
by the linear difference equation

,

with a measurement  that is

.

The state does not change from step to step so . There is no control input so
. Our noisy measurement is of the state directly so . (Notice that we

dropped the subscript k in several places because the respective parameters remain
constant in our simple model.)

4.3.2 The Filter Equations and Parameters

Our time update equations are

,

,

and our measurement update equations are

, (4.32)

,

.

Presuming a very small process variance, we let . (We could certainly let
 but assuming a small but non-zero value gives us more flexibility in “tuning” the

filter as we will demonstrate below.) Let’s assume that from experience we know that the
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true value of the random constant has a standard normal probability distribution, so we
will “seed” our filter with the guess that the constant is 0. In other words, before starting
we let .

Similarly we need to choose an initial value for , call it . If we were absolutely
certain that our initial state estimate  was correct, we would let . However
given the uncertainty in our initial estimate , choosing  would cause the filter to
initially and always believe . As it turns out, the alternative choice is not critical.
We could choose almost any  and the filter would eventually converge. We’ll start
our filter with . 

4.3.3 The Simulations

To begin with, we randomly chose a scalar constant  (there is no “hat” on
the z because it represents the “truth”). We then simulated 50 distinct measurements 
that had error normally distributed around zero with a standard deviation of 0.1 (remember
we presumed that the measurements are corrupted by a 0.1 volt RMS white measurement
noise). We could have generated the individual measurements within the filter loop, but
pre-generating the set of 50 measurements allowed me to run several simulations with the
same exact measurements (i.e. same measurement noise) so that comparisons between
simulations with different parameters would be more meaningful.

In the first simulation we fixed the measurement variance at . Because
this is the “true” measurement error variance, we would expect the “best” performance in
terms of balancing responsiveness and estimate variance. This will become more evident
in the second and third simulation. Figure 4.4 depicts the results of this first simulation.
The true value of the random constant  is given by the solid line, the noisy
measurements by the cross marks, and the filter estimate by the remaining curve.
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Figure 4.4: The first simulation: . The true val-
ue of the random constant  is given by the solid line, 
the noisy measurements by the cross marks, and the filter estimate 
by the remaining curve.

When considering the choice for  above, we mentioned that the choice was not critical
as long as  because the filter would eventually converge. Below in Figure 4.5 we
have plotted the value of  versus the iteration. By the 50th iteration, it has settled from
the initial (rough) choice of 1 to approximately 0.0002 (Volts2).

Figure 4.5: After 50 iterations, our initial (rough) error covariance 
 choice of 1 has settled to about 0.0002 (Volts2).

In Section 5.1 under the topic “Parameter Estimation or Tuning” we briefly discussed
changing or “tuning” the parameters Q and R to obtain different filter performance. In
Figure 4.6 and Figure 4.7 below we can see what happens when R is increased or
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decreased by a factor of 100 respectively. In Figure 4.6 the filter was told that the
measurement variance was 100 times greater (i.e. ) so it was “slower” to believe
the measurements.

Figure 4.6: Second simulation: . The filter is slower to re-
spond to the measurements, resulting in reduced estimate variance.

In Figure 4.7 the filter was told that the measurement variance was 100 times smaller (i.e.
) so it was very “quick” to believe the noisy measurements.

Figure 4.7: Third simulation: . The filter responds to 
measurements quickly, increasing the estimate variance.

While the estimation of a constant is relatively straight-forward, it clearly demonstrates
the workings of the Kalman filter. In Figure 4.6 in particular the Kalman “filtering” is
evident as the estimate appears considerably smoother than the noisy measurements.
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5. Other Topics

5.1 Parameter Estimation or Tuning

In the actual implementation of the filter, the measurement noise covariance  is usually
measured prior to operation of the filter. Measuring the measurement error covariance  is
generally practical (possible) because we need to be able to measure the process anyway
(while operating the filter) so we should generally be able to take some off-line sample
measurements in order to determine the variance of the measurement noise.

The determination of the process noise covariance  is generally more difficult as we typ-
ically do not have the ability to directly observe the process we are estimating. Sometimes
a relatively simple (poor) process model can produce acceptable results if one “injects”
enough uncertainty into the process via the selection of . Certainly in this case one would
hope that the process measurements are reliable.

In either case, whether or not we have a rational basis for choosing the parameters, often
times superior filter performance (statistically speaking) can be obtained by tuning the
filter parameters  and . The tuning is usually performed off-line, frequently with the
help of another (distinct) Kalman filter in a process generally referred to as system
identification.

Under conditions where  and .are in fact constant, both the estimation error
covariance  and the Kalman gain  will stabilize quickly and then remain constant. If
this is the case, these parameters can be pre-computed by either running the filter off-line,
or for example by determining the steady-state value of  as described in (Grewal and
Andrews 2001).

It is frequently the case however that the measurement error (in particular) does not remain
constant. For example, when sighting beacons in our optoelectronic tracker ceiling panels,
the noise in measurements of nearby beacons will be smaller than that in far-away beacons.
Also, the process noise  is sometimes changed dynamically during filter operation—be-
coming —in order to adjust to different dynamics. For example, in the case of tracking
the head of a user of a 3D virtual environment we might reduce the magnitude of  if the
user seems to be moving slowly, and increase the magnitude if the dynamics start changing
rapidly. In such cases  might be chosen to account for both uncertainty about the user’s
intentions and uncertainty in the model.

See (Welch 1996) for more information on this topic.
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5.2 Multi-Modal (Multiple Model) Filters

5.2.1 Random Processes and the Kalman Filter

The Kalman filter is based on the assumption of a continuous system that can be modeled
as a normally distributed random process , with mean  (the state) and variance  (the
error covariance). In other words,

.

Similarly the Kalman filter is based on the assumption that the output of the system can be
modeled as a random process  which is a linear function of the state  plus an
independent, normally distributed, zero-mean white noise process ,1

(5.1)

where , , and . From equations (2.12) and (2.14)
we have

.

However, the expression  reflects the filter’s estimate of the measurement
residuals (innovations), not the actual residuals. This becomes clear when one examines
the update expressions for  in the Kalman filter:  does not depend on the measurement
residual. The effect of this is that the expression  may indicate some small
residual variance, when in fact at particular points in time the variance is relatively large.
This is indeed exactly the case when one is simultaneously considering multiple models
for a process—one of the models, or some combination of them, is “right” and actually
has small residuals, while others are “wrong” and will suffer from large residuals. Thus
when one is computing the likelihood of a residual for the purpose of comparing model
performance, one must consider the liklihood of the actual measurement  at each time
step, given the expected performance of each model.

The Likelihood of the Measurements Given a Particular Model

Given equations (2.13) and (2.15), we can use the following conditional probability
density function as an indicator of the likelihood of a measurement  at step :

, (5.2)

1. Recall that “white” means that the spectral density is constant and the autocorrelation is a delta 
function. In other words, the output of the noise source at any one instant in time is independent 
from that at any other instant in time.
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where

.

We have omitted the subscript  for clarity. Note again that the state vector  and error
covariance matrix  are the a priori (predicted) versions at step , already computed at
each filter prediction step using equation (4.9) and equation (4.10). In other words, the
density is conditioned on the model  and all of its associated a priori (predicted)
parameters.

5.2.2 Fixed Multiple Models

We begin with the case where we believe that there is one correct model for the process,
and that the model is fixed or does not change over time, however we don’t know what that
model is. Over time, as the filter reaches a steady state, we want to converge on a choice
for the single most likely model. For this approach let us assume that the correct model 
is one of  possible known fixed models,

.

The Probability of a Particular Model Given the Measurements

Given a new measurement  at time step , and associated a priori state and covariance
estimates from equation (4.9) and equation (4.10), we can use equation (5.2) to compute
the recursive probability  that candidate model  is the correct model at that time:

. (5.3)

One would initialize  with some a priori estimate of the probability that  is the
correct model. For example, one could consider all models equally likely to begin with,
and set

, .

Note that  and  are scalars, and at every time step ,
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The Final Model-Conditioned Estimate

The final combined or model-conditioned estimate of the state  and error covariance 
are computed as a weighted combination of each candidate filter’s a posteriori state and
error covariance estimates. The weight for each candidate model is the model probability
given by equation (5.3). The final model-conditioned state estimate is computed as

, and (5.4)

the final model-conditioned error covariance as

, (5.5)

where .

The Algorithm

To begin with, one would instantiate  independent Kalman filters, one for each of the 
candidate models. Each of these filters would then be run independently, in parallel, with
the addition of the necessary individual density and final probability computations.

At each time update (see Figure 4.1) one would compute the normal a priori Kalman filter
elements (see table 4.1), and then

a. using the conditional density function given in equation (5.2), compute

the liklihood of the current (actual) measurement  for each candidate

model ;

b. using the previous probability  for each candidate model ,

use the recursive equation (5.3) to compute the probability  that

each individual model  is correct;

c. for each candidate model , compute the a posteriori (corrected) state

estimate  and error covariance  using equation (4.12) and

equation (4.13);

d. given each candidate filter’s a posteriori (corrected) state estimate

, compute the final model-conditioned state estimate  using

equation (5.4); and
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e. if desired, given each candidate filter’s a posteriori (corrected) error

covariance estimate , compute the final model-conditioned error

covariance  using equation (5.5).

Convergence of the Mode Estimates

As described in (Bar-Shalom and Li 1993), the final mode-conditioned state estimate will
converge to agree with one of the models, if one of the models is the correct one. In any
case, it will converge to some constant mode represented by a fixed weighting of the
individual multiple models.

If the actual mode is not constant, i.e. if the process can be switching or varying between
different models, one can use various ad hoc methods to prevent convergence on a single
mode. For example,

a. One can impose an artificial lower bound on the model probabilities,

b. impose a finite memory (sliding window) on the likelihood function, or

c. impose an exponential decay on the likelihood function.

A problem with using ad hoc means of varying the blending of fixed multiple models is
that the error in the incorrect models (at any moment) can grow unbounded, i.e. the
incorrect filters can get lost. Thus the filters might have to be re-initialized.

5.2.3 Dynamic Multiple Model Method

The multiple-model approach described in Section 5.2.2 is appropriate for systems where
we believe there is one correct model for the process, and that the model is fixed. However
there are situations where the choice from a set of candidate models varies continuously
while the filter is in operation.´In such a case one cannot make a fixed a priori choice of
filter parameters. Instead one could operate a set of candidate filters in parallel (similar to
Section 5.2.2) and use a continuously varying model-conditioned combination of the
candidate state and error covariance estimates.

The dynamic multiple model approach is virtually identical to the fixed approach outlined
in Section 5.2.2, with the exception of the model probability given by equation (5.3). In
the dynamic case we do not want the probabilities to converge to fixed values, but to
remain free to change with each new measurement. Given a new measurement  at time

Pk µ j,
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z
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step , and associated a priori state and covariance estimates from equation (4.9) and
equation (4.10), one could compute the probability  that candidate model  is the
correct model at that time simply using

. (5.6)

The algorithm would remain the same as in Section 5.2.2, except that in step (b) one
would use equation (5.6) instead of equation (5.3).

5.3 Hybrid or Multi-Sensor Fusion

Stochastic estimation tools such as the Kalman filter can be used to combine or fuse
information from different “mediums or sensors for hybrid systems. The basic idea is to
use the Kalman filter to weight the different mediums most heavily in the circumstances
where they each perform best, thus providing more accurate and stable estimates than a
system based on any one medium alone. In particular, the indirect feedback Kalman filter
shown in Figure 5.1 (also called a complementary or error-state Kalman filter) is often
used to combined the two mediums (Maybeck 1979). In such a configuration, the Kalman
filter is used to estimate the difference between the current inertial and optical (or acoustic)
outputs, i.e. it continually estimates the error in the inertial estimates by using the optical
system as a second (redundant) reference. This error estimate is then used to correct the
inertial estimates. The tuning of the Kalman filter parameters (see “Parameter Estimation
or Tuning” on page 35) then adjusts the weight of the correction as a function of
frequency. By slightly modifying the Kalman filter, adaptive velocity response can be
incorporated also. This can be accomplished by adjusting (in real time) the expected
optical measurement error as a function of the magnitude of velocity. The dashed line in
Figure 5.1 also indicates the use of inertial estimates to help a image-based optical system
to prevent tracking of moving scene objects (i.e. unrelated motion in the environment).

In such a configuration, the Kalman filter uses a common process model, but a distinct
measurement model for each of the inertial and optical subsystems.
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Figure 5.1: The Kalman filter used in an indirect-feedback
configuration to optimally weight inertial and optical information. 
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5.4 Single-Constraint-at-a-Time (SCAAT)

A conventional approach to pose estimation is to collect a group of sensor measurements
and then to attempt to simultaneously solve a system of equations that together completely
constrain the solution. For example, the 1991 UNC-Chapel Hill wide-area opto-electronic
tracking system (Wang 1990; Ward, Azuma et al. 1992) collected a group of diverse
measurements for a variety of LEDs and sensors, and then used a method of simultaneous
non-linear equations called Collinearity to estimate the pose of the head-worn sensor
fixture (Azuma and Ward 1991). There was one equation for each measurement,
expressing the constraint that a ray from the front principal point of the sensor lens to the
LED, must be collinear with a ray from the rear principal point to the intersection with the
sensor. Each estimate made use of typically 20 (or more) measurements that together over-
constrained the solution. 

This multiple constraint method had several drawbacks. First, it had a significantly lower
estimate rate due to the need to collect multiple measurements per estimate. Second, the
system of non-linear equations did not account for the fact that the sensor fixture
continued to move throughout the collection of the sequence of measurements. Instead the
method effectively assumes that the measurements were taken simultaneously. The
violation of this simultaneity assumption could introduce significant error during even
moderate motion. Finally, the method provided no means to identify or handle unusually
noisy individual measurements. Thus, a single erroneous measurement could cause an
estimate to jump away from an otherwise smooth track.

In contrast, there is typically nothing about typical solutions to the observer design
problem in general (Section 3.2), or the Kalman filter in particular (see “Parameter
Estimation or Tuning” on page 35), that dictates the ordering of measurement information.
In 1996 we introduced a new approach to tracking with a Kalman filter, an approach that
exploits this flexibility in measurement processing. The basic idea is to update the pose
estimate as each new measurement is made, rather than waiting to form a complete
collection of measurement. Because single measurements under-constrain the
mathematical solution, we refer to the approach as single-constraint-at-a-time or SCAAT
tracking (Welch 1996; Welch and Bishop 1997). The key is that the single measurements
provide some information about the tracker state, and thus can be used to incrementally
improve a previous estimate. We intentionally fuse each individual “insufficient”
measurement immediately as it is obtained. With this approach we are able to generate
estimates more frequently, with less latency, with improved accuracy, and we are able to
estimate the LED positions on-line concurrently while tracking.

This approach is used in our laboratory-based HiBall Tracking System (Welch, Bishop et
al. 1999; Welch, Bishop et al. 2001), the commercial version of the same system (3rdTech
2000), and the commercial systems manufactured by Intersense (Foxlin, Harrington et al.
1998; Intersense 2000). For more information see (Welch 1996; Welch and Bishop 1997),
the former which is included at the end of this course pack.
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B. Related Papers
This appendix includes a sample of some relevant papers that we have permission to
reproduce.
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